Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}$ * Da-Qi Wang ${ }^{b}$ and Tao Yu^{a}
${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.054$
$w R$ factor $=0.138$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(ethylenediamine- $\kappa^{2} N, N^{\prime}$)zinc(II) bis[2,3-di-mercaptobutenedinitrile(2-)- $\left.\kappa^{2} S, S^{\prime}\right]$ zincate(II)

The title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, exists as discrete ions, both of which lie on twofold rotation axes. The $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$ cation exhibits a slightly distorted octahedral geometry. In the $\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]^{2-}$ anion, the $\mathrm{Zn}^{\text {II }}$ atom is surrounded by two chelating ligands in a distorted tetrahedral geometry. The crystal structure is stabilized by hydrogen bonds of the types $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$.

Comment

The title compound, (I), consists of discrete $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]^{2-}$ anions (where en is ethylenediamine and mnt is 2,3-dimercaptobutenedinitrile). As shown in Fig. 1, Zn 2 in the cation is coordinated by six N atoms from three en molecules. A crystallographic twofold rotation axis in the cation passes through Zn 2 and the centre of the $\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$ bond [symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y,-z$]. The average $\mathrm{Zn}-\mathrm{N}$ bond length of 2.181 (6) \AA is in the normal range for zinc(II) complexes with amine N atoms. The trans angles of the ZnN_{6} octahedron are 165.5 (4), 167.0 (2) and $167.0(2)^{\circ}$. The other angles are in the range 79.5 (2)-99.8 (3) ${ }^{\circ}$, indicating a distorted octahedral geometry. Atom Zn 1 in the anion is fourcoordinated by two mnt ligands via four S_{\circ} atoms, with $\mathrm{Zn} 1-\mathrm{S}$ distances of 2.3229 (17) and 2.3311 (18) \AA. The angles around atom Zn 1 range from 93.65 (6) to $123.30(6)^{\circ}$, indicating a distorted tetrahedral environment. The amine N atoms in en and the nitrile N and mercapto S atoms of mnt participate in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a three-dimensional hydrogen-bond network (Fig. 2 and Table 1).

(I)

Experimental

$\mathrm{H}_{2} \mathrm{mnt}(1.00 \mathrm{mmol})$ and $\mathrm{NaOH}(2.00 \mathrm{mmol})$ were dissolved in 20 ml ethanol. To this solution, en (1.5 mmol) and an ethanol solution (30 ml) of $\mathrm{ZnSO}_{4}(1.0 \mathrm{mmol})$ were added dropwise at 313 K . The mixture was stirred for 4 h and part of the solvent was evaporated in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 8 d . Large colourless block-like crystals of (I) were obtained. Elemental analysis found: C $28.36, \mathrm{H} 4.02$, N 23.55 , S 21.61%; calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{~S}_{4} \mathrm{Zn}_{2}$: C 28.43, H 4.09, N 23.68 , S 21.69\%.

Received 30 September 2004
Accepted 25 October 2004
Online 30 October 2004

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]$	Mo $K \alpha$ radiation
$M_{r}=591.41$	Cell parameters from 1781 reflections
Orthorhombic, Pbcn	
$a=12.0231$ (12) \AA	$\theta=2.6-20.6^{\circ}$
$b=14.269$ (3) A	$\mu=2.28 \mathrm{~mm}^{-1}$
$c=14.559$ (3) A	$T=296$ (2) K
$V=2497.8(8) \AA^{3}$	Block, colourless
$Z=4$	$0.25 \times 0.20 \times 0.10 \mathrm{~mm}$
$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Bruker SMART CCD area-detector diffractometer	2158 independent reflections 1150 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.060$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-14 \rightarrow 13$
$T_{\text {min }}=0.600, T_{\text {max }}=0.804$	$k=-16 \rightarrow 16$
12094 measured reflections	$l=-16 \rightarrow 17$
Refinement	
Refinement on F^{2}	H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0649 P)^{2}\right]$
$w R\left(F^{2}\right)=0.138$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.00$	$(\Delta / \sigma)_{\text {max }}<0.001$
2158 reflections	$\Delta \rho_{\text {max }}=0.75 \mathrm{e}^{\circ}{ }^{-3}$
130 parameters	$\Delta \rho_{\text {min }}=-0.75$ e \AA^{-3}

Mo $K \alpha$ radiation parameters from 1781
reflections
$\mu=2.28 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colourless
$0.25 \times 0.20 \times 0.10 \mathrm{~mm}$

2158 independent reflections
150 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 13$
$k=-16 \rightarrow 17$

H -atom parameters constrained
$v=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0649 P)^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.75$ e \AA^{-3}
$\Delta \rho_{\min }=-0.75 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{~N}^{\mathrm{i}}$	0.90	2.40	$3.265(10)$	162
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.90	2.56	$3.348(9)$	146
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N}^{\mathrm{iii}}$	0.90	2.46	$3.056(9)$	124
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 1^{\text {iv }}$	0.90	2.53	$3.255(9)$	138
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S}^{\text {ii }}$	0.90	2.64	$3.505(8)$	162
Symmetry codes: (i)	$x-\frac{1}{2}, \frac{3}{2}-y,-z ;$	(ii)	$\frac{1}{2}-x, \frac{1}{2}+y, z ;$ (iii) $x, 1-y, z-\frac{1}{2} ; \quad$ (iv)	
$\frac{1}{2}-x, \frac{3}{2}-y, \frac{1}{2}+z$.				

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, or with $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Figure 1
The ions of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code: $-x, y, \frac{1}{2}-z$, for both a and b in the anion and cation, respectively.]

Figure 2
Crystal packing of (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogenbonding interactions as dashed lines. H atoms bonded to C atoms have been omitted.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

